18143453325 在线咨询 在线咨询
18143453325 在线咨询
所在位置: 首页 > 营销资讯 > 行业动态 > 让企业机器学习易如反掌

让企业机器学习易如反掌

时间:2022-04-02 04:51:01 | 来源:行业动态

时间:2022-04-02 04:51:01 来源:行业动态

IBM人工智能战略的强大之处在于我们实现了端到端的全方位的人工智能,践行了人工智能的基础在于相互优化的硬件和软件紧密配合这一理念。当客户使用专为人工智能设计、优化和加速的基础设施时,可同步了解到其性能提升的潜力,这将有助于企业更快地获得洞察价值,从而支持更大规模的企业级人工智能项目。

在IBM Think 2018时,我们成功验证过这套策略的强大优势,当展示运行在IBM Power Systems服务器上的IBM SnapML机器学习库的性能时,结果显示SnapML机器学习库在以广告为主的数据集上运行机器学习,以46倍超过谷歌云(Google Cloud)的速度创下了万亿级数据集的全新纪录。

自此,IBM研究人员一直努力改进,从而使SnapML成为一个为企业所用的更优工具。通过集成新的自动化功能,IBM使那些暂时没有配备如忍者数据科学家(ninja data scientists)的企业用户可以更容易地使用机器进行学习,减少机器学习流程中时间密集却又必不可少的任务类型(例如模型选择和超参数调整等任务)的数量。通过跨集群扩展,以及跨多核CPU和功能强大的现代CPU的扩展,SnapML能够及时识别精确的模型及其超参数配置,从而帮助企业获得潜在的竞争优势。

伯明翰大学研究计算基础设施架构师Simon Thompson表示:很多用户并没有意识到开源机器学习目录到底有多么庞大,以及要为特定数据或预期结果找到合适工具有多么困难。SnapML的自动化模型和数据库选择功能极大地缩短了破解上述难题所需的时间,从而使用户可以更快速地开始机器学习训练。

基于这些新工具,IBM研究院构建了一个基于SnapML的自动学习架构,并在5个数据集中运行企业应用案例,如预测旅客错过航班的可能性,有人点击在线广告的可能性,求职者的最优薪酬等应用。此外,还有一个更有趣但也更严格的数据集,即预测5张随意分发的扑克牌出现同花顺的可能性。

我们在4台IBM Power Systems AC922服务器集群上运行这个基于SnapML的架构,每台服务器都配备了两个20核IBM POWER9 CPU及4个GPU。为了更直观地进行对比,在完全相同的配置条件下部署了两个顶级的开源自动化机器学习架构。通过内部观测结果发现,在所有5个数据集上,基于SnapML的架构所达到的特定精度高达另一组竞争架构的10倍及以上水平。

关键词:学习,企业,机器

74
73
25
news

版权所有© 亿企邦 1997-2022 保留一切法律许可权利。

为了最佳展示效果,本站不支持IE9及以下版本的浏览器,建议您使用谷歌Chrome浏览器。 点击下载Chrome浏览器
关闭