18143453325 在线咨询 在线咨询
18143453325 在线咨询
所在位置: 首页 > 营销资讯 > 行业动态 > 传统银行反欺诈模型的局限

传统银行反欺诈模型的局限

时间:2022-03-24 09:24:01 | 来源:行业动态

时间:2022-03-24 09:24:01 来源:行业动态

银行经过多年历史数据沉淀,拥有大量的历史违约和欺诈数据,是反欺诈的重点聚焦领域。但对传统银行来说,一些传统的反欺诈手段,无论在效率、有效性、全面性以及成本上都是银行的短板,尤其随着互联网金融的兴起,非现场交易增多,更是加剧了银行风险防控的难度。

小众的欺诈事件越来越难以用商业经验和确切规则描述出来,国内目前的欺诈都是rule base(规则驱动)的,即凭借过往经验和从此前发生过的事实中,抽象出系列规则,每一条规则触发一种欺诈场景,交叉组合所施加的业务逻辑判断,就构成了欺诈模型,天云大数据CEO雷涛在接受第一财经采访时表示。



但在这个过程中,传统规则的模型就会带来很多问题,雷涛表示,申请欺诈就很难将一些难以描述的规则抽象出来。

例如,团伙在某村庄以招工的名义大量收取村民的身份证,并申请信用卡,然后刷卡透支,让村民背负银行债务。此时,银行按照过往经验便会判定该村地址为欺诈地址,使该村村民抹上信用污点,然而事实并非如此。因此,对于抽象的、难以描述的金融现象,便可以借助机器处理。

作为人工智能最重要的技术机器的深度学习,其最大价值就是能够做特征表达,通过一个数学的复杂结构来表达一些以往很难描述的金融现象,因此特别适合处理风险、欺诈以及金融产品的营销这些依靠过往经验难以准确定量的事件。

深度学习在金融领域本质上还是进行特征提取和问题描述,因为在整个金融链条上,包括借贷、个人理财、等多种金融产品和服务上,数据都起着核心作用,尤其是银行,拥有着上亿规模的标注数据。机器的深度学习可以将这些数据通过特征表达的方式转化到复杂的数据模型上,并依靠深层的神经网络,生成多层非线性的表达,这种表达可以代替原先的简单描述,雷涛称。例如Alpha go,就是利用深层的神经网络解决了对棋手棋风的描述和棋手大局观的定义问题,从而使之战胜世界级冠军。

事实上,国内目前将人工智能的深度学习技术与银行反欺诈相结合的应用还比较少,一些征信类公司开始通过提供丰富的外部数据资源来为银行提供反欺诈技术支持。例如前海征信产品部门基于Encoder-Decoder深度学习技术框架设计的智能风控专家机器人,可以应用于银行业风控反欺诈领域,解释贷款产品特性、借款人风险识别、贷款产品政策等各类问题,高效智能地服务信贷审批、贷后风控管理和资产组合经理,提升信贷产品审批速度,降低客户违约率,防范贷款欺诈风险。

同时,一些金融科技企业也正在与银行合作。例如天云大数据近期就利用其模型算法训练平台(MaximAI)为光大银行提供反欺诈方面的技术支持。基于样本数据进行一站式的模型算法训练、验证以及输出。训练完成的模型算法程序,被输出到欺诈分析引擎中,运行于大数据平台技术上,实现了实时在线对交易数据进行欺诈识别。

然而,目前在银行反欺诈方面中国与北美的差距还是很大的,硅谷的金融科技创业公司很早就将这一技术应用到金融反欺诈中。例如,京东和百度同时投资的美国金融科技公司Zest Finance,便是利用机器的深度学习这一人工智能中最重要的技术手段,从大量的数据中提取变量并采用多个预测分析模型包括欺诈模型、预付能力模型来帮助用户降低信贷成本,其核心竞争力便是数据挖掘能力和模型开发能力。

关键词:局限,模型,欺诈

74
73
25
news

版权所有© 亿企邦 1997-2022 保留一切法律许可权利。

为了最佳展示效果,本站不支持IE9及以下版本的浏览器,建议您使用谷歌Chrome浏览器。 点击下载Chrome浏览器
关闭