不再强调微处理器
时间:2022-03-17 13:42:01 | 来源:行业动态
时间:2022-03-17 13:42:01 来源:行业动态
Nvidia和其他GPU制造商正在试图满足云厂商和系统制造商对新型硬件架构的需求,这种架构将不再强调微处理器性能,而是突出架构本身非常适合机器学习工作负载并行处理的需求。专门用于处理机器学习工作负载的机器会把大部分工作交给GPU,GPU会并行处理数据并将结果反馈给CPU,因此CPU的速度就不需要那么快。
对于某些工作负载来说,这种方法带来了性能上质的飞跃。人工智能初创公司OpenAI上周获得了微软10亿美元的巨额投资,该公司曾在去年预测,在2012年到2018年期间,OpenAI最大规模的人工智能训练中所使用的计算能力增长了30多万倍,3.5个月就翻一番的速度远远超过了摩尔定律的增长速度。
不仅仅是GPU,手机采用的低功耗、精简指令集计算Arm微处理器也在物联网设备甚至是AWS ECS实例中寻找新的用途。
英特尔和其他公司也把赌注投向了持久内存,这种新型内存会把存储的数据保留特性与DRAM的速度优势结合到一起。持久内存特别适合超大规模场景,这种技术证明了云计算带来硬件优先级上的变化。这将是一项具有革命性的技术,VMware云平台业务部首席技术官Kit Colbert这样说。
由于云计算企业正试图帮助那些将大量数据移入和移出云端的客户解决延迟和数据传输问题,因此市场对网络硬件的兴趣也在激增。Hyperion公司的Sorensen表示:关键在与数据移动,而不是计算能力。可以解决数据移动问题的CPU将会胜出。
云计算三大巨头亚马逊、微软和谷歌总共投资数十亿美元在定制硬件上,用于提高自身云平台的性能或者调优服务来满足特定的用途,例如人工智能开发等等。云提供商喜欢人工智能。机器学习和深度学习过程会消耗大量数据,消耗的处理能力和所能提供的一样多。