时间:2024-01-23 16:30:01 | 来源:网站运营
时间:2024-01-23 16:30:01 来源:网站运营
Vmware虚拟机内存要怎么分配?:高端映射对立的是低端映射或所谓直接映射,内核中有关变量定义它们的它们的分界点,全局变量high_memory,该变量定义在mm/memory.c文件中(存在MMU的前提下),可见不区分体系结构,对于当前我手头的marvell的arm设备即对于arm体系结构,high_memory在初始化阶段的创建内存页表时初始化值,它的值就是:物理内存最后一个node的末尾,比如物理内存只有一个node,大小是256MB,再根据如下的算法就可以得出high_memory是多少:high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;max_low代表的是当前node的在物理内存中的物理页地址,比如物理内存从0x0开始(由PHYS_OFFSET决定),大小是256MB,即65536(0x10000)个物理页,那么max_low的值为0x10000,则high_memory的值为该物理页地址转为物理地址再转为虚拟地址的结果:0xd0000000。
high_memory之上就是高端内存的范围,这样的说法也不一定对,比如对于有的体系结构如arm,它的永久映射实际上就在high_memory之下的地方,但它依然是高端内存,所有物理内存都在初始化时映射在低端空间也是不一定正确的(这个可以在初始化时内存映射中发现,哪样的物理内存是会属于HIGHMEM区),所以我想通常意义的高端内存可以基本上定义为“不能直接通过偏移实现虚拟地址和物理地址映射”的虚拟空间、而“可以直接通过偏移实现虚拟地址和物理地址映射”的虚拟空间是低端内存(为什么低端映射也叫直接映射,这里体现出了直接的感觉)这样的方式界定比较好一些。#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))#define VMALLOC_END (PAGE_OFFSET + 0x30000000)
即vmalloc区始于high_memory加8MB的位置,结束于一个固定位置为0xF0000000;static void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, pgprot_t prot, int node, void *caller){ struct vm_struct *area; void *addr; unsigned long real_size = size; /*size 页对齐,因为vmalloc映射的物理内存不连续,所以是一页一页的映射, 即映射的物理内存大小必然是页的倍数,所以必须页对齐*/ size = PAGE_ALIGN(size); /*检查size正确性,不能为0且不能大于totalram_pages, totalram_pages是bootmem分配器移交给伙伴系统的物理内存页数总和*/ if (!size || (size >> PAGE_SHIFT) > totalram_pages) return NULL; /*申请一个vm_struct插入vmlist链表,申请一个vmap_area并插入红黑树 完成非连续内存区的高端虚拟地址分配,注意size总会额外在最后加一页,用于安全区(上图的4KB隔离带) 注意: vm_struct本身是使用kmalloc_node()在slab,所以在低端内存中; 而函数alloc_vmap_area真正分配了连续的高端虚拟地址 简单的总结: 分配一个vm_struct结构,获取对应长度(注意额外加一页)高端连续地址,最终插入vmlist链表*/ area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START, VMALLOC_END, node, gfp_mask, caller); if (!area) return NULL; /*本函数实际的给虚拟地址映射了不连续的物理内存(调用函数alloc_page一页一页的分配物理地址,函数map_vm_area实现映射) 返回值是分配的高端虚拟地址的起始*/ addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); /* * A ref_count = 3 is needed because the vm_struct and vmap_area * structures allocated in the __get_vm_area_node() function contain * references to the virtual address of the vmalloc'ed block. */ kmemleak_alloc(addr, real_size, 3, gfp_mask); /*返回值是分配的高端虚拟地址的起始*/ return addr;}
主要就是两大部分:分配高端虚拟地址(即分配一段vmalloc区间) + 给虚拟地址映射物理地址;【文章福利】小编推荐自己的Linux内核技术交流群:【865977150】整理了一些个人觉得比较好的学习书籍、视频资料共享在群文件里面,有需要的可以自行添加哦!!!前100名进群领取,额外赠送一份价值699的内核资料包(含视频教程、电子书、实战项目及代码)学习直通车:
进入函数__get_vm_area_node:static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long align, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, void *caller){ static struct vmap_area *va; struct vm_struct *area; BUG_ON(in_interrupt()); if (flags & VM_IOREMAP) { int bit = fls(size); if (bit > IOREMAP_MAX_ORDER) bit = IOREMAP_MAX_ORDER; else if (bit < PAGE_SHIFT) bit = PAGE_SHIFT; align = 1ul << bit; } size = PAGE_ALIGN(size); if (unlikely(!size)) return NULL; /*申请一个vm_struct,本质还是通过kmalloc申请,申请的是高端的虚拟内存 kmalloc可保证虚拟内存的连续性,这验证了vmalloc申请的虚拟地址是连续的 本质就是: 使用kmalloc_node()在slab中,分配一个vm_struct结构*/ area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; /* * We always allocate a guard page. */ /*vmalloc总是要将size加上一个页框的大小作为安全区*/ size += PAGE_SIZE; /*在start到end中,分配足够size大小的内核虚拟空间*/ /*注意: vmap_area结构体(返回值va)本身也是通过kmalloc分配,所以也在低端内存中, 它的成员va_start和va_end指示了真正申请的高端虚拟内存的地址范围,可见是线性的(连续的) [va_start---va_end]落在高端内存的非连续映射区(vmalloc区)中,va_end - va_start = size = 实际需要映射长度 + 4KB(安全区) 寻找新节点在红黑树的插入点并计算出应该的高端地址值(addr),关于红黑树,细节暂不讨论留在后续 将最终的高端地址值赋给va,并插入红黑树中*/ va = alloc_vmap_area(size, align, start, end, node, gfp_mask); if (IS_ERR(va)) { kfree(area); return NULL; } /*将va的值(高端地址起始和长度)赋给area,最终把area插入vmlist链表*/ insert_vmalloc_vm(area, va, flags, caller); /*这里area已经被赋值的成员有,addr和size(高端地址)、flag、caller*/ return area;}
首先注意结构体vm_struct,它是vmalloc的管理方法非常重要:struct vm_struct { struct vm_struct *next; /*指向下一个vm区域*/ void *addr; /*指向第一个内存单元(线性地址)*/ unsigned long size; /*该块内存区的大小*/ unsigned long flags; /*内存类型的标识字段*/ struct page **pages; /*指向页描述符指针数组*/ unsigned int nr_pages; /*内存区大小对应的页框数*/ unsigned long phys_addr; /*用来映射硬件设备的IO共享内存,其他情况下为0*/ void *caller; /*调用vmalloc类的函数的返回地址*/};
全局变量vmlist是管理所有vmalloc对象的链表表头,每个vmalloc映射都要把它的映射结果即一个struct vm_struct型的描述符加入链表中,成员next用于这个链表;addr指示这段vmalloc区的虚拟地址起始;size标识这段vmalloc区的长度;flags标识映射方式,在include/linux/vmalloc.h文件中有明确的使用方式,像在__vmalloc_node调用就是VM_ALLOC:#define VM_IOREMAP 0x00000001 /* ioremap() and friends */成员pages是一个数组,每个成员都是所映射的物理页的page描述符地址;nr_pages标识所映射的物理页,注意它不包括一页的隔离带;phys_addr用来映射硬件设备的IO共享内存,其他情况下为0;caller是调用vmalloc类的函数的返回地址,它是用于调试和找问题的比如可以通过proc下的vmallocinfo看是哪个函数在申请高端虚拟内存;
#define VM_ALLOC 0x00000002 /* vmalloc() */
#define VM_MAP 0x00000004 /* vmap()ed pages */
#define VM_USERMAP 0x00000008 /* suitable for remap_vmalloc_range */
#define VM_VPAGES 0x00000010 /* buffer for pages was vmalloc'ed */
static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask){ struct vmap_area *va; struct rb_node *n; unsigned long addr; int purged = 0; BUG_ON(!size); BUG_ON(size & ~PAGE_MASK); /*vmap_area结构体本身也是通过kmalloc分配,所以也在低端内存中*/ va = kmalloc_node(sizeof(struct vmap_area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM);/*下面是寻找新节点在红黑树的插入点并计算出应该的高端地址值(addr),关于红黑树,细节暂不讨论留在后续*/retry: addr = ALIGN(vstart, align); spin_lock(&vmap_area_lock); if (addr + size - 1 < addr) goto overflow; /* XXX: could have a last_hole cache */ n = vmap_area_root.rb_node; if (n) { struct vmap_area *first = NULL; do { struct vmap_area *tmp; tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_end >= addr) { if (!first && tmp->va_start < addr + size) first = tmp; n = n->rb_left; } else { first = tmp; n = n->rb_right; } } while (n); if (!first) goto found; if (first->va_end < addr) { n = rb_next(&first->rb_node); if (n) first = rb_entry(n, struct vmap_area, rb_node); else goto found; } while (addr + size > first->va_start && addr + size <= vend) { addr = ALIGN(first->va_end + PAGE_SIZE, align); if (addr + size - 1 < addr) goto overflow; n = rb_next(&first->rb_node); if (n) first = rb_entry(n, struct vmap_area, rb_node); else goto found; } }found: if (addr + size > vend) {overflow: spin_unlock(&vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = 1; goto retry; } if (printk_ratelimit()) printk(KERN_WARNING "vmap allocation for size %lu failed: " "use vmalloc=<size> to increase size./n", size); kfree(va); return ERR_PTR(-EBUSY); } BUG_ON(addr & (align-1));/*将最终的高端地址值赋给va,并插入红黑树中*/ va->va_start = addr; va->va_end = addr + size; va->flags = 0; __insert_vmap_area(va); spin_unlock(&vmap_area_lock); return va;}
这个函数alloc_vmap_area作用就是根据所要申请的高端地址的长度size(注意这里的size已经是加上一页隔离带的size),在vmalloc区找到一个合适的区间并把起始虚拟地址和结尾地址通知给内核,具体说来还包括struct vmap_area的问题,它是实际维护vmalloc信息的数据结构,比较复杂,linux内核维护vmalloc信息是通过红黑树算法(一种特殊的平衡二叉树,增删查改效率高)实现,这个东西比较麻烦一些,后续专门讨论它,但不了解它不影响对vmalloc管理的分析,这里知道alloc_vmap_area函数的最终作用是得到被分配的高端虚拟地址起始和结尾地址即可;static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, int node, void *caller){ struct page **pages; unsigned int nr_pages, array_size, i; /*得到实际需要映射的页数(减去一页的安全区)*/ nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; /*并得到所需的空间(页数*page结构长度)*/ array_size = (nr_pages * sizeof(struct page *)); area->nr_pages = nr_pages; /* Please note that the recursion is strictly bounded. */ /*不仅要映射的高端地址通过__get_vm_area_node分配高端地址, 提供映射的页指针也在高端地址分配,不足一页的话在低端地址中分配*/ if (array_size > PAGE_SIZE) { pages = __vmalloc_node(array_size, 1, gfp_mask | __GFP_ZERO, PAGE_KERNEL, node, caller); area->flags |= VM_VPAGES; } else { pages = kmalloc_node(array_size, (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, node); } /*将映射用的页表pages在分配到高端(不足一页在低端)地址后,赋给area*/ area->pages = pages; area->caller = caller; if (!area->pages) { remove_vm_area(area->addr); kfree(area); return NULL; } /*从伙伴系统中进行物理内存页面的分配,注意是为每一个页面分配空间*/ for (i = 0; i < area->nr_pages; i++) { struct page *page; /*UMA系统*/ if (node < 0) page = alloc_page(gfp_mask); /*NUMA系统*/ else page = alloc_pages_node(node, gfp_mask, 0); if (unlikely(!page)) { /* Successfully allocated i pages, free them in __vunmap() */ area->nr_pages = i; goto fail; } /*将页表pages里的内容填充,填充的是一个一个的物理页地址*/ area->pages[i] = page; } /*area的addr和size代表了要映射的高端地址,pages里填充了实际被映射的物理页地址 接下来完成虚拟地址到物理地址的映射,注意最终是要创建二级映射(二级页表空间需从buddy申请,大小为1页)*/ if (map_vm_area(area, prot, &pages)) goto fail; return area->addr; fail: vfree(area->addr); return NULL;}
首先实际需要映射的页数(注意不包含一页的隔离带),计算这个的目的是到页表所需的空间(页数*page结构长度),确切的说是二级页表所需的空间(从之前的文章可知道,二级映射的页表是动态创建的,一级页表即段页表是常驻内存),注意如果这个二级页表它所占的空间超出一页长度,那么也在vmalloc区里分配它,否则就在低端连续区分配即可;另外从编程角度看,这里递归了一下函数__vmalloc_node;int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages){ unsigned long addr = (unsigned long)area->addr; unsigned long end = addr + area->size - PAGE_SIZE; int err; /*start和end代表了要映射的高端地址,pages里填充了实际被映射的物理页地址 注意最终是要在内核页表中创建二级映射*/ err = vmap_page_range(addr, end, prot, *pages); if (err > 0) { *pages += err; err = 0; } return err;}
注意都是二级映射,这里涉及了内存页表知识可以看之前的描述内存页表的那篇文章,arm的MMU只有二级映射,本函数前期基本相当于空跑即跳过linux的pud、pmd,直到函数vmap_pte_range开始创建二级映射;static int s_show(struct seq_file *m, void *p){ struct vm_struct *v = p; seq_printf(m, "0x%p-0x%p %7ld", v->addr, v->addr + v->size, v->size); if (v->caller) { char buff[KSYM_SYMBOL_LEN]; seq_putc(m, ' '); sprint_symbol(buff, (unsigned long)v->caller); seq_puts(m, buff); } if (v->nr_pages) seq_printf(m, " pages=%d", v->nr_pages); if (v->phys_addr) seq_printf(m, " phys=%lx", v->phys_addr); if (v->flags & VM_IOREMAP) seq_printf(m, " ioremap"); if (v->flags & VM_ALLOC) seq_printf(m, " vmalloc"); if (v->flags & VM_MAP) seq_printf(m, " vmap"); if (v->flags & VM_USERMAP) seq_printf(m, " user"); if (v->flags & VM_VPAGES) seq_printf(m, " vpages"); show_numa_info(m, v); seq_putc(m, '/n'); return 0;}
比如我的当前打印如下:/ # cat proc/vmallocinfo0xbf000000-0xbf0b3000 733184 module_alloc+0x54/0x60 pages=178 vmalloc0xd085e000-0xd0860000 8192 __arm_ioremap_pfn+0x64/0x144 ioremap0xd0861000-0xd0882000 135168 ubi_attach_mtd_dev+0x390/0x9c8 pages=32 vmalloc0xd0883000-0xd08a4000 135168 ubi_attach_mtd_dev+0x3b0/0x9c8 pages=32 vmalloc0xd08a5000-0xd08ac000 28672 ubi_read_volume_table+0x178/0x8cc pages=6 vmalloc0xd08b6000-0xd08b8000 8192 __arm_ioremap_pfn+0x64/0x144 ioremap0xd08ba000-0xd08bc000 8192 __arm_ioremap_pfn+0x64/0x144 ioremap0xd08bd000-0xd08ce000 69632 lzo_init+0x18/0x30 pages=16 vmalloc0xd08cf000-0xd0912000 274432 deflate_init+0x1c/0xe8 pages=66 vmalloc0xd0913000-0xd0934000 135168 ubifs_get_sb+0x79c/0x1104 pages=32 vmalloc0xd0935000-0xd0937000 8192 ubifs_lpt_init+0x30/0x428 pages=1 vmalloc0xd095d000-0xd095f000 8192 ubifs_lpt_init+0x30/0x428 pages=1 vmalloc0xd0960000-0xd0965000 20480 __arm_ioremap_pfn+0x64/0x144 ioremap0xd0966000-0xd0987000 135168 ubi_attach_mtd_dev+0x390/0x9c8 pages=32 vmalloc0xd0988000-0xd09a9000 135168 ubi_attach_mtd_dev+0x3b0/0x9c8 pages=32 vmalloc0xd09aa000-0xd09b1000 28672 ubi_read_volume_table+0x178/0x8cc pages=6 vmalloc0xd09ba000-0xd09db000 135168 ubifs_get_sb+0x79c/0x1104 pages=32 vmalloc0xd09dc000-0xd09fd000 135168 ubifs_get_sb+0x7b8/0x1104 pages=32 vmalloc0xd0a00000-0xd0b01000 1052672 __arm_ioremap_pfn+0x64/0x144 ioremap0xd0bd0000-0xd0bd2000 8192 ubifs_lpt_init+0x220/0x428 pages=1 vmalloc0xd0bd3000-0xd0bf4000 135168 ubifs_lpt_init+0x234/0x428 pages=32 vmalloc0xd0bf5000-0xd0bf8000 12288 tpm_db_mod2_setup_jump_area+0x84/0x3cc pages=2 vmalloc0xd0bf9000-0xd0bfb000 8192 tpm_db_mod2_setup_jump_area+0x100/0x3cc pages=1 vmalloc0xd0bfc000-0xd0bfe000 8192 tpm_db_mod2_setup_jump_area+0x174/0x3cc pages=1 vmalloc0xd0c00000-0xd0d01000 1052672 __arm_ioremap_pfn+0x64/0x144 ioremap0xd0d24000-0xd0d45000 135168 ubifs_mount_orphans+0x44/0x41c pages=32 vmalloc0xd0d46000-0xd0d48000 8192 tpm_db_mod2_setup_jump_area+0x1f4/0x3cc pages=1 vmalloc0xd0d49000-0xd0d4b000 8192 tpm_db_mod2_setup_jump_area+0x270/0x3cc pages=1 vmalloc0xd0d4c000-0xd0d4e000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d4f000-0xd0d51000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d52000-0xd0d54000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d55000-0xd0d57000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d58000-0xd0d5a000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d5b000-0xd0d5d000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d5e000-0xd0d60000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d61000-0xd0d63000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d64000-0xd0d66000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d67000-0xd0d69000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d6a000-0xd0d6c000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d6d000-0xd0d6f000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d70000-0xd0d72000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d73000-0xd0d75000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d76000-0xd0d78000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d79000-0xd0d7b000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d7c000-0xd0d7e000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d7f000-0xd0d81000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d82000-0xd0d84000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d85000-0xd0d87000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d88000-0xd0d8a000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d8b000-0xd0d8d000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d8e000-0xd0d90000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d91000-0xd0d93000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d94000-0xd0d96000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0d97000-0xd0d99000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0d9a000-0xd0d9c000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0d9d000-0xd0db0000 77824 tpm_db_mod2_setup_chain_area+0x264/0x308 pages=18 vmalloc0xd0db1000-0xd0db4000 12288 tpm_db_mod2_setup_jump_area+0x84/0x3cc pages=2 vmalloc0xd0db5000-0xd0db7000 8192 tpm_db_mod2_setup_jump_area+0x100/0x3cc pages=1 vmalloc0xd0db8000-0xd0dba000 8192 tpm_db_mod2_setup_jump_area+0x174/0x3cc pages=1 vmalloc0xd0dbb000-0xd0dbd000 8192 tpm_db_mod2_setup_jump_area+0x1f4/0x3cc pages=1 vmalloc0xd0dbe000-0xd0dc0000 8192 tpm_db_mod2_setup_jump_area+0x270/0x3cc pages=1 vmalloc0xd0dc1000-0xd0dc3000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0dc4000-0xd0dc6000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0dc7000-0xd0dc9000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0dca000-0xd0dcc000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0dcd000-0xd0dcf000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0dd0000-0xd0dd2000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0dd3000-0xd0dd5000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0dd6000-0xd0dd8000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0dd9000-0xd0ddb000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0ddc000-0xd0dde000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0ddf000-0xd0de1000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0de2000-0xd0de4000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0de5000-0xd0de7000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0de8000-0xd0dea000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0deb000-0xd0ded000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0dee000-0xd0df0000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0df1000-0xd0df3000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0df4000-0xd0df6000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0df7000-0xd0df9000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0dfa000-0xd0dfc000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0dfd000-0xd0dff000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0e00000-0xd0f01000 1052672 __arm_ioremap_pfn+0x64/0x144 ioremap0xd0f02000-0xd0f04000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f05000-0xd0f07000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f08000-0xd0f0a000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f0b000-0xd0f0d000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f0e000-0xd0f10000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f11000-0xd0f13000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f14000-0xd0f27000 77824 tpm_db_mod2_setup_chain_area+0x264/0x308 pages=18 vmalloc0xd0f28000-0xd0f2b000 12288 tpm_db_mod2_setup_jump_area+0x84/0x3cc pages=2 vmalloc0xd0f2c000-0xd0f2e000 8192 tpm_db_mod2_setup_jump_area+0x100/0x3cc pages=1 vmalloc0xd0f2f000-0xd0f31000 8192 tpm_db_mod2_setup_jump_area+0x174/0x3cc pages=1 vmalloc0xd0f32000-0xd0f34000 8192 tpm_db_mod2_setup_jump_area+0x1f4/0x3cc pages=1 vmalloc0xd0f35000-0xd0f37000 8192 tpm_db_mod2_setup_jump_area+0x270/0x3cc pages=1 vmalloc0xd0f38000-0xd0f3a000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f3b000-0xd0f3d000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f3e000-0xd0f40000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f41000-0xd0f43000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f44000-0xd0f46000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f47000-0xd0f49000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f4a000-0xd0f4c000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f4d000-0xd0f4f000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f50000-0xd0f52000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f53000-0xd0f55000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f56000-0xd0f58000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f59000-0xd0f5b000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f5c000-0xd0f5e000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f5f000-0xd0f61000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f62000-0xd0f64000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f65000-0xd0f67000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f68000-0xd0f6a000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f6b000-0xd0f6d000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f6e000-0xd0f70000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f71000-0xd0f73000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f74000-0xd0f76000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f77000-0xd0f79000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f7a000-0xd0f7c000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f7d000-0xd0f7f000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f80000-0xd0f82000 8192 tpm_db_mod2_setup_chain_area+0xd4/0x308 pages=1 vmalloc0xd0f83000-0xd0f85000 8192 tpm_db_mod2_setup_chain_area+0x150/0x308 pages=1 vmalloc0xd0f86000-0xd0f88000 8192 tpm_db_mod2_setup_chain_area+0x1b0/0x308 pages=1 vmalloc0xd0f89000-0xd0f9c000 77824 tpm_db_mod2_setup_chain_area+0x264/0x308 pages=18 vmalloc0xd1000000-0xd1101000 1052672 __arm_ioremap_pfn+0x64/0x144 ioremap0xd1200000-0xd1301000 1052672 __arm_ioremap_pfn+0x64/0x144 ioremap
是不是非常清楚!关键词:分配,虚拟