想破解难题,AI中台是关键
时间:2022-04-25 02:21:01 | 来源:行业动态
时间:2022-04-25 02:21:01 来源:行业动态
由此,百度智能云针对三道试题均给出了清晰地解题思路。王磊表示,做好智慧能源的核心关键,是将AI技术和传统的业务实现紧密的融合,才能有效地实现智慧能源的目标。
具体而言,根据 AI 应用的目前情况和国内外建设的实例,分成分散应用、垂直深化、企业AI中台、企业AI大脑四个阶段。目前,多数电力能源企业处于第二阶段,即垂直深化AI应用阶段,企业开始探索更多场景,并将AI应用扩大到更多业务。例如能源巡检和生产管理部门已经开始考虑尝试在线性资产当中使用无人机、专业机器人做电力巡检、能源管道巡检等工作。
但是,硬件的变化远不能满足企业智能化建设的需求,企业集中建设AI中台的时代即将到来。对此,百度智能云的经验是,要从方法论到实践落地全面帮助企业进行智能化建设,并形成自主可控的AI技术能力与保障体系。这些前提,是必须要构建标准化、自动化、模块化的智能服务基础设施。
基于此,百度智能云推出AI中台,从模型管理、样本管理、到模型开发和标注,构建一体化的 AI 中台方案,全面支撑能源巡检、综合能源、智能调度、智能营销等核心业务。如果说,我们把数据中台比喻成中央厨房,从数据选择、清洗,到数据标记、管理、存储,实现数据全生命周期的管理。那么,AI中台则更进一步,是升级版的智能厨房,即在数据中台基础之上,融合算法模型、机器学习、监控服务等与 AI 紧耦合的能力,和业务系统深度融合,构建涵盖业务理解、模型学习、数据处理和运行监控的全生命周期管理的服务。
以百度智能云为代表的公司提供的AI整体解决方案,将改变整个电力能源行业的生产和管控的模式,王磊表示。举例来看,当前电力能源企业大多拥有万亿价值的资产,如何高效管理好是关键,例如输电线路、输油管道、专有设备等等。传统巡检方法,是依靠巡检工程师巡线查找缺陷,靠的是专家意见;现在使用人工智能的办法自动识别和事故判定,依靠百度250项成熟AI能力模型对图片和数据进行识别,可以大大节省一线巡检工程师工作量,达到基层减负的目标。