自动驾驶,数据是基石,但并不是全部
时间:2022-04-21 18:06:01 | 来源:行业动态
时间:2022-04-21 18:06:01 来源:行业动态
而Mobileye公司,正在试图在自动驾驶领域,书写堪比机器人三定律,甚至更精确的规则。
这个月的月初,至顶网(赛博故事母平台)拜访了Mobileye,一家创立于 1999 年,总部位于以色列的高科技公司。该公司的主要业务为辅助驾驶系统和自动驾驶开发所需要的计算机视觉、机器学习、数据分析、定位与地图建模等技术。2017 年的 3 月,Mobileye被英特尔公司斥资 153 亿美元收购,并与后者的自动驾驶事业部(ADG)合并,形成新的自动驾驶部门,由 Mobileye 联合创始人、董事长兼首席技术官阿姆侬沙书亚(Amnon Shashua)教授领导。
图注:Mobileye 联合创始人、董事长兼首席技术官阿姆侬沙书亚教授
很长时间以来,自动驾驶汽车的安全可靠性,一直被认为只和数据量密切相关。这是由于这一次由机器学习、深度学习带来人工智能浪潮的本质来是使用统计学方法对数据的利用,让机器通过吃掉海量的数据来总结模式和规律。只要数据足够多,也就是路测的里程足够长,自动驾驶汽车就会更安全。沙书亚在和我们交流中表示,在自动驾驶这件事上,把任务完全交给统计学是不可行的,不能只有数据训练,还要有一些常识原则,否则会面临极大的发展障碍。
障碍之一在于经济性,要让人类信任自动驾驶汽车,安全性至少要比人类司机好100倍。如果用统计学方法来实现,这就意味着1亿小时的路测,假设路测时每小时行驶30公里,路测的距离是30亿公里, 沙书亚做了一个简单的计算来证明经济上的不可能性,毕竟30亿公里,相当于绕地球跑了7万圈还不止。
障碍之二来自于黑箱问题,沙书亚认为统计学之上的AI 既不透明、也不公开。现在的深度学习是基于数据的自动编程,一种方式成功了,我们知道它有效,但是我们不知道它为什么有效,反之,如果它失败了,我们也不知道它为什么失效,唯一能做的就是不断调整参数,加大数据量,试图让结果更尽如人意,但实际上我们对其内在一无所知。
但对自动驾驶而言,透明是非常重要的。毕竟驾驶这件事太复杂了,涉及到社会安全,涉及到驾驶员、乘客、路人,以及涉及交通部门、汽车公司甚至保险公司等利益相关方。一旦车辆发生事故,我们却无法向涉事相关方解释缘由,也无法界定责任,进而很难让自动驾驶赢得社会信任。
在自动驾驶汽车,很可能成为人类第一个要考虑如何与其安全相处的智能机器之际。Mobileye试图在统计学之上,增加一些人类可以理解的规则,发布了它RSS Responsibility Sensitive Safety模型,中文翻译为责任敏感安全模型。RSS中所制定的各种规则,正如同阿西莫夫的机器人三定律,其核心目的也是安全。