研究新冠肺炎的传播机理
时间:2022-04-06 12:15:01 | 来源:行业动态
时间:2022-04-06 12:15:01 来源:行业动态
机器学习还在帮助研究人员和从业者分析大量数据来预测新冠肺炎的传播,从而实现疫情预警,确定易感人群。此前加州Chan Zuckerberg Biohub(陈扎克伯格生物中心)的研究人员建立了一个模型来预估未被发现的新冠肺炎感染者数量及其对公共健康的影响。研究覆盖了全球12个地区。通过运用机器学习技术并与AWS诊断开发计划合作,他们开发了一种新的方法来量化未被检测到的感染者,即通过分析病毒在人群中传播时如何变异从而推断有多少被遗漏的感染者。
在疫情爆发之初,AWS客户、一家专注于使用人工智能技术检测疫情爆发的加拿大初创企业BlueDot,是最早对这次呼吸道疾病突然爆发发出预警的公司之一。该公司使用机器学习算法对65种语言的新闻报道、航空公司数据和动物疾病网络进行筛选来预测疾病的传播,随后由流行病学家审核数据结果,从科学角度验证这些结论是否有意义。BlueDot利用这些研究成果为卫生系统官员、航空公司和医院提供洞察,帮助他们更好地预测和管理风险。
机器学习也帮助相关领导机构对新冠疫情做出更明智的决策。今年3月,由前白宫首席数据科学家DJ Patil领导的一队志愿者专家找到AWS寻求帮助,希望AWS支持他们搭建一个基于场景进行规划的工具来模拟新冠肺炎的潜在影响,为类似我们需要多少张病床或者我们应该发布多长时间的居家隔离指令这样的问题寻找答案。他们需要扩展其开源模型,以便美国各地的州长都能够了解接触、感染和住院者的数量,来更好地做出应对计划。该机构与AWS和约翰霍普金斯大学布隆博格公共卫生学院密切合作,将该模型转移到了云端,在短短几个小时内处理了多个场景,并将模型推广到美国所有50个州和美国以外,帮助做出直接影响新冠疫情全球传播的决策。
各种机构也在研究限制新冠病毒传播的方法,特别是针对易感人群。AWS与人工智能初创公司Closedloop合作,利用他们在医疗数据方面的专业知识,识别感染新冠病毒后发生严重并发症的高风险患者。Closedloop开发并开源了一个新冠病毒易感指数C-19指数,这是一个基于人工智能的预测模型,可以识别可能发生新冠病毒严重并发症的高风险人群。这个指数正被医疗系统、护理管理机构和保险公司用来识别高危人群,呼吁他们重视洗手和保持社交距离,向他们提供食物、卫生纸和其他必需品,帮助他们进行居家隔离保护。