医学影像和智慧城市的训练和部署堆栈
时间:2022-03-25 12:18:01 | 来源:行业动态
时间:2022-03-25 12:18:01 来源:行业动态
跨行业的高效工作流程始于预先训练的模型,然后使用新的数据执行迁移学习训练。接下来,再对网络进行精简和优化,然后部署到边缘设备上进行推理。将这些预先训练的模型与迁移学习相结合,就无需耗费高昂的成本从头开始,大规模收集数据、添加标签并训练模型,能够让业内专家快速启动深度学习工作流程。
但是,训练、优化和部署的细节却因行业而异。NGC如今面向智慧城市和医学影像领域提供了具有针对性的工作流程。
在智慧城市领域, 用于流式传输分析的NVIDIA迁移学习工具包提供为智能视频分析工作负载量身定制的迁移学习,例如对象检测和摄像头视频帧分类。然后通过面向智慧城市的NVIDIA DeepStream SDK ,将经过重新训练、优化和精简的模型部署到NVIDIA Tesla或Jetson平台。
在医学影像领域,NVIDIA Clara Train SDK使医疗机构能够先使用预先训练的MRI扫描模型进行器官分割,然后使用迁移学习来根据该机构的数据集对这些模型进行改进。Clara Train会生成优化模型,然后使用NVIDIA Clara Deploy SDK进行部署,以便日后为新患者的扫描结果提供更强大的分割能力。