AI技术,突破3D视觉技术的难点
时间:2022-03-18 16:48:02 | 来源:行业动态
时间:2022-03-18 16:48:02 来源:行业动态
3D感知硬件能够提供距离、深度等数据信息,但我们要的并不是单纯的数据,而是基于这些数据,通过不同的表达和理解方式,实现不同的应用。比如对三维场景进行数字化建模,或者绘制三维地图,从而让机器能够实时感知自己在所处空间中的位置,以便在运动时及时避开障碍物等。这需要根据深度信息生成深度图像,并与RGB图像,甚至是红外图像进行融合并完成大量计算。
但是,通过硬件感知的信息生成的深度图像,往往存在因硬件性能限制而产生的瑕疵,例如在细小或复杂交错的物体之间,出现深度信息估计错误等问题。此外,精准度、鲁棒性、实时性、效率等都是决定实际应用效果的关键。这都需要依靠额外的算法进行实时处理予以弥补和增强。
在工业场景中,由于应用相对单一,且3D感知硬件大多处于固定或平稳状态,很多难题可以通过编写特定算法加以解决。但在移动终端上,不规则的抖动、晃动等情况带来的难以预估的挑战,传统算法难以突破。
2012年,AI在计算机视觉领域取得突破,给3D视觉技术发展也带来了全新思路。AI可通过对大量实际数据进行学习,自行总结其中的规律和特征。这种方法可以在短时间内,完成传统算法需要多年才能突破的问题,有效弥补硬件能力的不足。
更为重要的是,AI不仅能感知场景中的三维结构,还能识别出场景中的三维物体是什么,在做什么。例如检测人、物体,识别人的姿态,跟踪物体的运行轨迹这就进一步敞开了机器认知世界的新大门。
在我们看来,3D硬件的小型化,是3D视觉技术应用场景拓展和创新的硬件基础,而AI技术则是真正的动力引擎。两者密不可分,可以说,AI 3D视觉技术拐点已至。