18143453325 在线咨询 在线咨询
18143453325 在线咨询
所在位置: 首页 > 营销资讯 > 营销百科 > Lp空间L空间

Lp空间L空间

时间:2023-04-01 11:38:01 | 来源:营销百科

时间:2023-04-01 11:38:01 来源:营销百科

Lp空间L空间:泛函分析中,常常会在某类函数的集合上架设拓扑结构乃至更复杂的结构,以便使用拓扑乃至分析学的知识来讨论这些集合的属性。最常见的附加结构是赋范向量空间。将函数集合作为装备了范数向量空间来看待,有助于理解函数类的关系和性质。范数是欧几里德空间中长度概念的推广。在平面几何或立体几何中,长度以及距离是最基本的概念之一。对象的形状、位置、大小等性质或关系都是建立在长度和距离的定义上。最直观的长度概念是由平直物理空间中抽象而来,满足勾股定理。例如说在平面上,原点到点的向量长度是。三维空间中,原点到点的向量长度。长度函数满足如下的基本性质:

  1. 只有零向量的长度是零:

    数乘线性:

    满足三角不等式:

比如说在更一般的n维欧几里德空间中,可以定义向量的欧几里德长度是

这个函数也满足以上的基本性质。更一般地,在向量空间中,满足以上性质的函数:称为上的'长度'函数或范数。比如在欧几里德空间中也可以对给定的实数p ≥ 1定义范数:

这个范数称为上的p-范数。p = 2的时候,就是常见的欧几里德范数。p = 1的时候,是所谓的曼哈顿距离。当p趋于无穷大的时候,p-范数趋于一个'极限'范数,称为一致范数(也记作L∞-范数),定义为:

对不同的p来说,等长度点的集合是不一样的。比如右图列出了三种不同范数下单位圆(从原点出发,'长度'等于1的点的集合)形状。

关键词:空间

74
73
25
news

版权所有© 亿企邦 1997-2025 保留一切法律许可权利。

为了最佳展示效果,本站不支持IE9及以下版本的浏览器,建议您使用谷歌Chrome浏览器。 点击下载Chrome浏览器
关闭