◆ 数据挖掘是打开数据宝藏的钥匙
时间:2022-02-24 17:40:02 | 来源:网络推广
时间:2022-02-24 17:40:02 来源:网络推广
人工智能有一个重要的应用:数据挖掘。作为近年来新兴的一门计算机边缘学科,其在国内外引起了越来越多的关注。
并且随着数据挖掘技术的不断改进和数据挖掘工具的不断完善,数据挖掘必将在各行各业中得到广泛的应用。
数据挖掘是从大量的数据中通过算法发现有价值信息的过程,这项以数据库技术、统计分析、人工智能等为依托的技术出现有其必然性和可行性。
首先,数字经济的到来对数据的处理和利用提出了更高的要求,而传统的数据处理方法对大量数据无从下手,必然要求有更为先进的数据处理技术。
其次,大数据和云计算技术的不断发展,使得借助计算机来完成大量数据的处理和分析成为可能。
在智慧城市领域,数字技术把基础地理数据、正射影像、街景影像数据、全景影像数据、三维模型数据结合在一起,这产生了大量的地图数据,而在智慧城市的建设和应用中,将产生从TB到PB级越来越多的数据,从而进入大数据时代。
而对于这些大数据来说,传统的数据分析工作已经不适合对其进行合理的分析,导致了一种数据爆炸但知识贫乏的现象。
目前在智慧城市的智慧交通,智慧国土等应用中的数据库系统主要局限于实现数据的录入、查询、统计等功能,但无法有效地发现数据中存在的关系和规则,很难把握数据背后隐藏的知识,无法根据现有的数据预测未来的趋势。
这在一定程度上阻碍了智慧城市的应用与普及。而数据挖掘技术恰恰是解决这一难题的最佳方法。
应用数据挖掘技术,可以从GIS数据库中发现更多的地理知识和地理规律、对专题数据进行有效、合理的分析,从而达到城市的智能运行、政府的科学决策、公众的便捷生活及企业的高效运营。
在银行业,数据挖掘同样有很多的应用场景,其中一个就是风险管理,如信用风险评估。可通过构建信用评级模型,评估贷款申请人或信用卡申请人的风险。
一个进行信用风险评估的解决方案,能对银行数据库中所有的账户指定信用评级标准,用若干数据库查询就可以得出信用风险的列表。
这种对于高/低风险的评级或分类,是基于每个客户的账户特征,如尚未偿还的贷款、信用调降报告历史记录、账户类型、收入水平及其他信息等。
对于银行账户的信用评估,可采用直观量化的评分技术。将顾客的海量信息数据以某种权重加以衡量,针对各种目标给出量化的评分。
以信用评分为例,通过由数据挖掘模型确定的权重,来给每项申请的各指标打分,加总得到该申请人的信用评分情况。银行根据信用评分来决定是否接受申请,确定信用额度。
过去,信用评分的工作由银行信贷员完成,只考虑几个经过测试的变量,如就业情况、收入、年龄、资产、负债等。现在应用数据挖掘的方法,可以增加更多的变量,提高模型的精度,满足信用评价的需求。
毫无疑问,数据挖掘是打开数据宝藏的一把钥匙,但是其普及推广还是难度很大。
主要原因是数据挖掘的技术门槛过高,涉及到机器学习、模型算法、python等很多专业的技术,一般的IT人员很难掌握。虽然市场上也有一些专业的平台软件,但它们的易用性还是不够,学习起来有一定的难度。所以,一款简单易用的可视化数据挖掘平台就显得非常重要。
由思迈特软件出品的Smartbi Mining操作起来非常简单,建模、训练、部署等都是在一个界面完成。业务人员可以参与,整个过程很直观。
里面有很多内置的模型算法,模型参数也是默认调整到最优状态,大大降低了使用门槛。而且,系统随时可以扩展,处理海量数据也不会出现问题。