为你的场景找到人工智能的位置
时间:2022-04-13 16:03:01 | 来源:行业动态
时间:2022-04-13 16:03:01 来源:行业动态
人工智能只是一个单纯的技术,需要与对应的应用场景进行结合,自动驾驶就是典型应用。王晓雷表示,AI能做的与人类想要的交集就是我们的机会。所以,我们给人工智能找到一个合适的落地场景。为了实现这样的目标,我们需要思考以下问题:
- 预测的目标可以被量化吗?
- 与目标相关的特征可以被有效的表达吗?
- 指标和目标相关吗?
- 有足够的数据来训练模型吗?
不可否认,人工智能代表着未来的方向。但是在生活中,除了在某些特定的场景(自然语言处理和计算机视觉)使用到外,人们还无法感受到它的存在和意义。目前人工智能还远没有达到一个被公众所大范围接受的地步,因为它真正缺失的也是最核心的东西,正是用户场景。更准确地来说是接地气的用户场景。
在当前,随着CNN、RNN等算法成熟和GPU对计算能力的提高,现今人工智能所需要面临的是如何使应用深化,从而对产业发起变革。特别是场景化、标签化的数据获得是人工智能应用落地的关键。我们以安防为例,在深度学习、计算机视觉算法开源化的大趋势下,具有特征性的场景数据集的获得,是对安防行业人工智能视频分析技术真正落地应用的关键。
1956年,美国达特茅斯大学会议标志着人工智能研究的正式诞生,推动了了全球第一次人工智能浪潮。但这一次人工智能的春天只持续了20年,原因是当时过于重视算法和方法论,而导致了人工智能在处理问题范围的局限性。
如今,人工智能研究的发展已经历了六十多年的沉浮,从硬件的计算能力、到深度学习算法、计算机视觉技术和自然语言处理等各领域都有了本质上的飞跃,人工智能已经从一个学术层面上的探索发展成一种可推动产业结构变革的新兴生产方式。
在这样的情况,整个社会需要正视人工智能技术,拥抱人工智能,推动其在行业中的落地,而问题是在发展中解决的,我们不能因噎废食。相信未来人工智能在整个产业革新方面发挥越来越重要的作用。