机器深度学习提升反欺诈能力
时间:2022-03-24 09:24:01 | 来源:行业动态
时间:2022-03-24 09:24:01 来源:行业动态
利用机器的深度学习技术反欺诈的原理,实际上是从银行反欺诈的脆弱点着手,不再只通过传统策略引擎,而是通过机器收集到大量异构、多源化的信息,包括可交叉验证信息主体所提供的信息以及第三方信息来源的真实性,形成共享库。通过对数据的采集和分析,再通过机器学习及复杂网络等模型算法技术,对数据进行深度挖掘,从传统历史数据中量化抽取风险特征指标,利用复杂网络关联分析技术从历史违约数据中发现实时欺诈业务风险指标,丰富深度学习风险模型的业务维度,建立人工智能反欺诈模型,从而发现欺诈者隐藏的蛛丝马迹,分析其数据的矛盾点和可疑点,从而识别欺诈者身份,加上与传统经验规则配合使用,大幅提升银行欺诈风险的防控能力。
欺诈分析所使用的数据主要来源于内部数据和外部数据,针对不同的数据源,通过多种采集方式对数据进行有效采集,并集中在数据湖中进行融合存储。根据预测模型分析的需求,通过配套的数据处理技术工具对数据进行预处理,最终输出模型训练所需的样本数据。
就拿上述某村庄信用卡申请欺诈为例,银行可以利用复杂网络(Complex Network)技术,在不从外部引入新数据的情况下,抽取现有进件数据(application form)的关联性,从每一个进件与进件的关联中分辨出是否使用类似的电话号码、类似的地址以及类似的区域,建立的社交关联属性与其他金融数据输入深度学习网络做有监督的训练,在数十万欺诈案例数据上得到一个动态识别模型。
去年10月,美国政府发布的《为人工智能的未来做好准备(Preparing for the Future of Atificial Intelligence)》报告称,机器的深度学习是人工智能最重要的技术手段之一,同时也是人工智能取得很多进展和商业应用的基础。该报告同时还提到,现代机器学习是一个始于大数据的统计学过程,通过数据分析推导出规则或者流程,用于解释数据或者预测未来数据。
在金融科技领域,大型金融实体与Fintech企业的合作上具有独到优势,因其多年历史沉淀下来的数据,不仅仅是行为数据,更有有价值的违约数据,与人工智能目前的发展阶段非常匹配即提供给机器答案的学习。
未来,随着人工智能的逐步成熟,例如当下GAN对抗神经网络等科技演进,让机器自主选择方法,我们不仅不再需要描述问题,或为提供答案而承担昂贵的试错成本,而是面向最终安全的反欺诈目标,由人工智能提供面向目标的学习。