最大的障碍非常常见:低分辨率的视频
时间:2022-03-04 10:04:01 | 来源:行业动态
时间:2022-03-04 10:04:01 来源:行业动态
举个例子来说,一个神经网络经过训练,可以分析视频中的人类行为。这些工作是通过将人体细分为多个部分--手臂、腿、肩膀、头部等--然后观察这些小的部分在视频中从一帧到另一帧的变化来进行的。这样,人工智能可以告诉你是否有人在跑步,或者是在梳头发。Hauptmann对《The Verge》表示:"但是这取决于你所拥有的视频的分辨率。" Hauptmann表示:"如果我用一个摄像头对准停车场的尽头,如果我能分辨出是否有人打开了车门,就算是非常幸运的了。如果你就站在(摄像头)前面弹吉他,它就可以跟踪你每一根手指的动作。"
对于闭路电视监控系统来说,这是一个大问题,摄像头往往会有颗粒感,而角度也常常很怪异。Hauptmann举了一个便利店摄像头的例子,摄像头的目的是监控收银机,但是它也监视着面向街道的窗子。如果外面发生了抢劫,摄像头的镜头有一部分被挡住了,那么人工智能可能就会卡住。他表示:"但是我们作为人类,可以想象正在发生的事情,并且把它们拼凑在一起。可是电脑就做不到这一点。"
同样,虽然人工智能很好地识别视频中的相关事件(例如,某人正在刷牙、看手机或者踢足球),但仍不能提取重要的因果关系。以分析人类行为的神经网络为例。它可能会看到镜头并说"这个人正在跑步",但它不能告诉你他们之所以在跑步,是因为他们快要赶不上公共汽车了,还是因为他们偷了某人的手机。
这些关于准确度的问题应该让我们认真思考一些人工智能创业企业的宣言。我们现在还远未接近这样一个点:电脑通过观看视频能够获得和人类一样的见解。(研究人员可能会告诉你,要做到这一点可是太困难了,因为它基本上是"解决"智力问题的同义词。)但是事情的发展速度非常快。
Hauptmann表示使用车牌跟踪功能跟踪车辆是"一个已经得到解决的实际问题",在受控设置中的面部识别也是一样的。(使用低质量的闭路电视监控视频进行面部识别就完全是另一回事了。)对汽车和衣物等物品的识别也非常可靠,在多台摄像机之间自动跟踪一个人也是可以实现,但前提是条件是正确的。Hauptmann表示:"在一个非拥挤的场景中跟踪一个人的效果可能非常好,但是在拥挤的场景中,还是算了吧。"他表示,如果这个人穿着的是不起眼的服装,要做到这一点就特别难。
一些人工智能监控任务已经解决了;另外一些还需要继续努力
但是,即使是这些非常基本的工具也可以产生非常强大的效果。比如在莫斯科,一个类似的基础设施正在组装,将面部识别软件插入到一个集中式系统中,该系统拥有超过10万台高分辨率摄像头,覆盖了这个城市90%以上的公寓入口。
在这种情况下,可能会有一个良性循环,随着软件越来越好,系统会收集更多的数据,从而帮助软件变得更好。Hauptmann表示:"我认为这一切都会有所改善。"他表示:"这种情况正在出现。"
如果这些系统已经在工作了,那么我们就已经有了像算法偏差这样的问题。这可不是一个假设的挑战。研究表明,机器学习系统吸收了为它们编写程序的社会的种族歧视和性别歧视--从总是会将女性放置在厨房的图像识别软件到总是说黑人更容易再次犯罪的刑事司法系统,比比皆是。如果我们使用旧的视频剪辑来训练人工智能监控系统,例如采集自闭路电视视频监控或者警察佩戴的摄像头的视频,那么存在于社会中的偏见就很可能会延续下去。
Meredith Whittaker是纽约大学(NYU)关注道德的"AI Now"研究所的联席主任,她表示,这个过程已经在执法过程出现了,并将扩展到私有部门。Whittaker举出了Axon(以前被称为Taser)的例子,该公司收购了几家人工智能公司,以帮助其将视频分析功能集成到产品中。Whittaker表示:"他们得到的数据来自警察佩戴的摄像头,这些数据告诉了我们很多关于单个警务人员会关注谁的情况,但是并没有给我们一个完整的描述。 "她表示:"这是一个真正的危险,我们正在将带有偏见的犯罪和罪犯的图片普遍化。"
ACLU高级政策分析师Jay Stanley表示,即使我们能够解决这些自动化系统中的偏见,也不能使它们变得良性。他说,将闭路电视视频监控摄像头从被动的观察者转变为主动的观察者可能会对公民社会产生巨大的不利影响。
"我们希望人们不仅仅拥有自由,还要感受到自由。"
Stanley表示:"我们希望人们不仅仅拥有自由,还要感受到自由。这意味着他们不必担心未知的、看不见的观众会如何解释或曲解他们的每一个动作和话语。" Stanley表示:"要担心的是人们会不断地自我监控,担心他们所做的一切都会被曲解,并给他们的生活带来负面的后果。"
Stanley还表示,不准确的人工智能监控发出的错误警报也可能导致执法部门和公众之间更加危险的对抗。比如说,想想看Daniel Shaver的枪击事件吧,在看到Shaver拿着枪后,一名警察被叫到德克萨斯州的一个旅馆房间里。警长Charles Langley在Shaver按照他的要求趴在地面上时,开枪射杀了他。而Shaver被发现持有的枪是一支粒丸枪,这是他用来从事他的害虫控制工作的。
如果一个人可以犯这样的错误,电脑还有什么机会?而且,即使是监控系统变得部分自动化,这样的错误会变得更加常见还是更少?Stanley表示:"如果技术出现在那里,就会有一些警察不得不照看那里。"
当人工智能监控变得普及的时候,谁来管理这些算法呢?
Whittaker表示,我们在这个领域看到的只是人工智能大趋势的一部分,在这个趋势中,我们使用这些相对粗糙的工具,尝试着根据人们的形象对他们进行分类。她列举了去年发表的一项有争议的研究作为一个类似的例子,该研究声称能够通过面部识别来确定性取向。人工智能给出的结果的准确性值得怀疑,但批评人士指出,它是否有效并不重要;重要的是人们是否相信它有用,并且是否会仍然使用数据做判断。
Whittaker表示:"令我感到不安的是,许多这样的系统正在被注入我们的核心基础设施之中,而且没有让我们可以提出关于有效性问题的民主程序,也没有通知大家将要部署这些系统。"Whittaker表示:"这不过是正在出现的又一个新的例子:算法系统根据模式识别提供分类并确定个体类型,可是这些识别模式是从数据中提取的,而这些数据里包含了文化和历史的偏见。"
当我们向IC Realtime公司询问人工智能监控可能如何被滥用的问题时,他们给出了一个在科技行业常见的答案:这些技术是价值中立的,只是如何使用它们以及由谁来使用它们才决定了它们是好是坏。Sailor表示:"任何新技术都面临着有可能落入不法之徒的手中的危险。"Sailor表示:"任何技术都是如此而我认为在这个问题上,利远大于弊。"